A Simulation Preorder for Koopman-like Lifted Control Systems

Antoine Aspeel & Necmiye Ozay

University of Michigan

Funded by ONR MURI

Motivation

Modern control problems are often safety critical

 \rightarrow Need for provably correct control policies

Dynamical system f_X	Control method	Provably correct policy π
Specification S	Controller	Ch

Challenging for nonlinear systems

Abstraction based techniques [1,2,3]

- 1. Define a notion of simulation between systems $f_x \leq f_y$
- 2. Prove that $f_x \leq f_y$ and $f_y \vDash_{\pi} S$ implies $f_x \vDash_{\pi} S$

[1] Baier, C., & Katoen, J. P. (2008). Principles of model checking. [2] Tabuada, P. (2009). Verification and control of hybrid systems: a symbolic approach. [3] Reissig, G., Weber, A., & Rungger, M. (2016). Feedback refinement relations for the synthesis of symbolic controllers.

Koopman-inspired simulation

Key idea: Approximate a nonlinear system by a linear one using a lifting function Given

- a nonlinear systems $x(t + 1) = f_X(x(t), u(t))$
- a lifting function $\psi: \mathbb{R}^{n_X} \to \mathbb{R}^{n_Y}: x \mapsto \psi(x) = \begin{bmatrix} x \\ \phi(x) \end{bmatrix}$

consider $y = \psi(x)$ and find

 $y(t + 1) = Ay(t) + Bu(t)$ s.t. $\psi(f_X(x, u)) \approx A\psi(x) + Bu$

- Most works do not provide formal guarantees [1,2]
- Simulation-like relations for autonomous systems in [3,4]
- Control systems are considered in our previous work [5]

[1] Korda, M., & Mezić, I. (2018). Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. [2] Proctor, J. L., Brunton, S. L., & Kutz, J. N. (2018). Generalizing Koopman theory to allow for inputs and control. [3] Sankaranarayanan, S. (2016). Change-of-bases abstractions for non-linear hybrid systems. [4] Wang, Z., Jungers, R. M., & Ong, C. J. (2023). Computation of invariant sets via immersion for discrete-time nonlinear systems. [5] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired implicit backward reachable sets for unknown nonlinear systems.

3

[5] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired implicit backward reachable sets for unknown nonlinear systems.

4

Outline

1. Lifted systems

2. Preordering lifted systems

3. Computational aspects (and challenges)

4. Future works and conclusion

Lifted systems

A **lifted system** is a tuple $LS_v = (X, U, \psi_Y, f_Y, g_Y)$, where

- $X \subseteq \mathbb{R}^{n_X}$ a set of outputs
- U a set of inputs
- $\psi_Y: \mathbb{R}^{n_X} \to \mathbb{R}^{n_Y}$ a lifting function
- $f_Y: \mathbb{R}^{n_Y} \times U \rightrightarrows \mathbb{R}^{n_Y}$ a set-valued dynamics
- $g_Y: \mathbb{R}^{n_Y} \to \mathbb{R}^{n_X}$ an output map such that $g_Y(\psi_Y(x)) = x$

 $f_{\rm v}(\nu, u) = A_{\rm v}\nu + B_{\rm v}u \bigoplus W_{\rm v}$ $g_Y(y) = [I \ 0]y$ $\psi_Y(x) = \begin{bmatrix} x \\ \phi(x) \end{bmatrix}$

A **solution** of LS_Y is a tuple $(x, u, y) \in X^{[0,T[} \times U^{[0,T[} \times (\mathbb{R}^{n_Y})^{[0,T[} \text{ s.t. }$

- $y(0) = \psi_Y(x(0))$
- $y(t + 1) \in f_Y(y(t), u(t))$
- $\chi(t) = g_{\rm V}(\gamma(t))$

Lifted systems

A **solution** of LS_Y is a tuple $(\bm x, \bm u, \bm y) \in X^{[0,T[} \times U^{[0,T[} \times (\mathbb{R}^{n_Y})^{[0,T[}$ s.t.

- $y(0) = \psi_Y(x(0))$
- $y(t + 1) \in f_Y(y(t), u(t))$
- $x(t) = g_Y(y(t))$

Important classes of lifted systems

● **Unlifted** (i.e., "classical") systems

 $x^+ \in f_X(x,u)$

are lifted systems with $n_Y = n_X$ and $\psi_Y = g_Y = id$. Concrete systems of interest are unlifted

A **lifted system** is a tuple $LS_Y = (X, U, \psi_Y, f_Y, g_Y)$

Affine lifted systems $y^+ \in Ay + Bu \oplus W$ $x = Cv$ Polyhedra

for which linear control methods can be used

Piecewise affine lifted systems

Behavior and Specifications

The **closed-loop behavior** of LS_y under a policy π is the set:

 $\bm{B}_{\pi}[LS_{Y}] = \{ (x, u) \mid \exists y \text{ s.t.} (x, u, y) \text{ is a max.}^* \text{ solution} \& u(t) = \pi(x(0), ..., x(t)) \}$

A **specification** is a set of finite or infinite sequences of (x, u) pairs: $S \subseteq (X \times U)^\infty$

e.g., safety or linear temporal logic

The specification S is **satisfied** by the lifted system LS_v under the policy π if $B_{\pi}[LS_v] \subseteq S$. This is written $LS_v \vDash_{\pi} S$

* A solution is **maximal** if it is either:

- infinite, i.e., $T = \infty$
- ii. blocking, i.e., $f_Y(y(T), u(T)) = \emptyset$
- iii. possibly leaving the output set, i.e., $g_Y(f_Y(y(T), u(T))) \nsubseteq X$

Simulation relation for lifted systems

LS_Y is **simulated** by LS_Z (denoted $LS_Y \leq LS_Z$) if there exists a set-valued map $\rho: \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ such that

- $\forall x \in X$: $\psi_Y(x) \in \rho(\psi_Z(x))$
- $\forall (z, u) \in \mathbb{R}^{n_z} \times U:$ $f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))$

 $\forall z \in \mathbb{R}^{n_Z}$: $g_Y(\rho(z)) \subseteq \{g_Z(z)\}$

• a technical condition to handle blockingness

* Similar to alternating simulation.

(Relation between liftings)

*(between dynamics)**

(between outputs)

Simulation implies behavioral inclusion

THEOREM

Given two lifted systems LS_Y and LS_Z and a policy π , if LS_Y is simulated by LS_Z , then the closed-loop behavior of LS_y under π is included in the closed-loop behavior of LS_z under π , i.e.,

 $LS_Y \leqslant LS_Z \implies B_\pi[LS_Y] \subseteq B_\pi[LS_Z]$

COROLLARY

$$
LS_Y \leqslant LS_Z \vDash_{\pi} S \quad \Rightarrow \quad LS_Y \vDash_{\pi} S
$$

Some special cases of $LS_{Y} \leqslant LS_{Z}$

If LS_v is unlifted (i.e., "classical") and

 \bullet *LS_z* is affine

à **Koopman over-approximation** [1]

- LS_Z is affine and both systems are autonomous (i.e., $U = \{0\}$) à **Approximate immersion** [2]
- \bullet *LS₇* is piecewise affine and unlifted \rightarrow **Hybridization** [3]

12 [1] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired implicit backward reachable sets for unknown nonlinear systems. [2] Wang, Z., Jungers, R. M., & Ong, C. J. (2023). Computation of invariant sets via immersion for discrete-time nonlinear systems. [3] Girard, A., & Martin, S. (2011). Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices.

In practice…

Given an unlifted (i.e., "classical") system LS_x

- Step 1: Pick K lifting functions $\psi_1, ..., \psi_K$
- Step 2: For each, compute an affine lifted system LS_k s.t. $LS_x \leq LS_k$
- Step 3: If $LS_i \leq LS_j$, delete LS_i
- Step 4: Use one of the remaining lifted system to synthesize a policy

Computing affine lifted systems (Step 2)

Given

- an unlifted (i.e., "classical") system LS_x
- a lifting function ψ

find an affine lifted system LS_y s.t. $LS_x \leq LS_y$

Can be handled using Sum-of-Squares optimization

Illustration with backward reachable sets (BRS)

DEFINITION (informal)

The **BRS** of $x^+ \in f(x, u)$ is the set of points from which there exists a control sequence leading to a given target set, while staying in a safety set.

Illustration with backward reachable sets (BRS)

Comparing affine lifted systems (Step 3)

Given two affine lifted systems LS_y and LS_z , verifying if $LS_y \leq LS_z$ is a feasibility problem:

Find
$$
\rho: \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}
$$
 s.t.
\n• $\forall x \in X:$
\n $\forall y(x) \in \rho(\psi_Z(x))$
\n• $\forall z, u) \in \mathbb{R}^{n_Z} \times U$:
\n $A_Y \rho(z) + B_Y u \bigoplus W_Y \subseteq \rho(A_Z z + B_Z u \oplus W_Z)$
\n• $[I_{n_Y} \ 0] \rho(z) \subseteq \{[I_{n_Z} \ 0]z\}$
\n• infinite number of constraints

We derived **finite-dimensional** sufficient conditions by assuming $\rho(z) = Rz \oplus W$

Unfortunately, it is **too conservative** to be useful in practice…

Take home message

- Preorder between lifted systems
- Lifted systems can be used as abstractions
- A first (theoretical) step towards a method to select the lifting function ψ

Limitations and future works

● Need to improve computational methods

 \rightarrow Find finite dimensional parameterizations for $\rho(z)$ that reduces conservatism

● Generalize to continuous-time and hybrid systems

Thank you!

Any questions?

A Simulation Preorder for Koopman-like Lifted Control Systems

Antoine Aspeel & Necmiye Ozay

University of Michigan, Ann Arbor