A low-Rank Approach to Minimize Sensor-to-Actuator Communication in Finite-Horizon Output Feedback

Antoine Aspeel¹

Jakob Nylof 1,2

Jing Shuang (Lisa) Li¹

Necmiye Ozay¹

Funded by ONR MURI

CLEVR-A

¹ University of Michigan
² KTH Royal Institute of Technology

Motivations

Modern control systems are composed of distributed components interacting via a communication network

 \rightarrow Limited communications

Motion capture system in a drone arena

Minimize the number of communications from sensor to actuator

Related works

Self-/Event triggered control

• Heemels, W. P., Johansson, K. H., & Tabuada, P. An introduction to event-triggered and self-triggered control. *CDC* 2012.

 \rightarrow Most works focus on triggering sensors or actuators (not communication)

Approximate a given controller to reduce communication

• Braksmayer, M., & Mirkin, L. Redesign of stabilizing discrete-time controllers to accommodate intermittent sampling. *IFAC-PapersOnLine*, 2017.

 \rightarrow Do not minimize communications

Problem statement

• Linear discrete time system

 $x_{t+1} = Ax_t + Bu_t + w_t$ $y_t = Cx_t + v_t$

finite horizon t = 1, ..., T

• Safety constraint:

For all $w_t \in W$, $v_t \in V$, and $x_1 \in X_{init}$, it holds that $u_t \in U$ and $x_t \in X$ for all t

• Minimize the number *r* of messages (will be precised soon)

To simplify notation: SISO

Controller structure

Controller structure: matrix formulation

 \rightarrow Optimize over **D** and **E** under causality constraint

Problem statement: MINIMUM MESSAGES PROBLEM

Find the minimum r such that there exists

- $\circ \quad \mathbf{E} \in \mathbb{R}^{r \times T}$
- $\circ \quad \mathbf{D} \in \mathbb{R}^{T \times \boldsymbol{r}}$
- $\circ \quad 1 \leq t_1 \leq \cdots \leq t_r \leq T$

satisfying

- 1. <u>Controller is causal</u>: for all k = 1, ..., r: $\mathbf{E}_{k,\tau} = \mathbf{D}_{t,k} = 0$ for $t < t_k < \tau$
- 2. Controller closes the loop: m = Ey, u = Dm

3. <u>Linear dynamics</u>: $x_{t+1} = Ax_t + Bu_t + w_t$, $y_t = Cx_t + v_t$

4. <u>Safety constraints</u>: For all $w_t \in W$, $v_t \in V$, and $x_1 \in X_{init}$: $u_t \in U$ and $x_t \in X$ for all t

Problem statement

Optimizing over t_k , **D** and **E** is hard... (combinatorial, bilinear)

- \rightarrow Uses a 2 steps approach
- 1. Optimize over K
- 2. Factorize **K** into (**D**, **E**) and recover the t_k

Causal factorization

DEFINITION

Given a triangular matrix $\mathbf{K} \in \mathbb{R}^{T \times T}$, a **causal factorization** of **K** is a pair (**D**, **E**) s.t.

- **1.** $\mathbf{E} \in \mathbb{R}^{r \times T}$
- **2**. **D** $\in \mathbb{R}^{T \times r}$
- $3. \quad \mathbf{K} = \mathbf{D}\mathbf{E}$
- 4. There exits $1 \le t_1 \le \dots \le t_r \le T$ s.t. for all $k = 1, \dots, r$

$$\mathbf{E}_{k,\tau} = \mathbf{D}_{t,k} = 0 \qquad \text{for } t < t_k < \tau$$

The number of messages r is the **band** of the factorization.

Observation: Since $\mathbf{K} = \mathbf{D}\mathbf{E}$, $r \ge \operatorname{rank} \mathbf{K}$

Question: Is there always a factorization of band $r = \operatorname{rank} \mathbf{K}$?

(r rows)

(r columns)

(causality)

(factorization)

Rank minimization

Question: Is there always a factorization of band $r = \operatorname{rank} \mathbf{K}$? **Yes!**

THEOREM 1

- 1. Any triangular matrix $\mathbf{K} \in \mathbb{R}^{T \times T}$ admits a causal factorization with band $r = \operatorname{rank} \mathbf{K}$
- 2. There is a polynomial time algorithm to compute such a causal factorization

COROLLARY

An optimal solution to the MINIMUM MESSAGES PROBLEM can be obtained by

1. Solving

 $\min_{\mathbf{K}} \operatorname{rank} \mathbf{K} \quad \text{s. t.} \quad (\text{Triang.}), \quad (\text{System Dynamics}), \quad (\text{Safety}), \quad \mathbf{u} = \mathbf{K}\mathbf{y}$

2. Computing a causal factorization (D, E) of K with band equal to rank K

Rank minimization

COROLLARY

An optimal solution to the MINIMUM MESSAGES PROBLEM can be obtained by

1. Solving

min rank **K** s.t. (Triang.), (System Dynamics), (Safety), u = Ky

2. Computing a causal factorization (D, E) of K with band equal to rank K

- No combinatorial constraint due to t_k anymore!
- Safety constraint is non-convex in K

→ Use Youla-parameterization [1] or System Level Synthesis (SLS) [2]

Skaf, Boyd. Design of affine controllers via convex optimization. *TAC*, 2010.
Anderson, Doyle, Low, Matni. System level synthesis. *Annual Reviews in Control*, 2019

System level synthesis

THEOREM (adapted from [1]) All system responses $\{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}\}$ $\begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} \Phi_{xx} & \Phi_{xy} \\ \Phi_{ux} & \Phi_{uy} \end{bmatrix} \begin{bmatrix} w \\ v \end{bmatrix}$ achievable by a triangular *K* (and only those) are triangular and satisfy $\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy} \in \text{AffineSpace}$ In addition, $K = \Phi_{uy} - \Phi_{ux} \Phi_{xx}^{-1} \Phi_{xy}$

The safety constraint is convex in $\{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}\}$ (using Farkas' lemma) Question: How to express rank K in terms of $\{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}\}$

[1] Hassaan, Yong. System-level recurrent state estimators for affine systems subject to data losses Modeled by automata. CDC, 2022 12

System level synthesis

Question: How to express rank K in terms of $\{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}\}$

THEOREM 2If $\{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}\}$ are triangular and satisfy $\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy} \in AffineSpace$ and $K = \Phi_{uy} - \Phi_{ux}\Phi_{xx}^{-1}\Phi_{xy}$, thenrank $K = rank \Phi_{uy}$

The big picture...

COROLLARY

An optimal solution to the MINIMUM MESSAGES PROBLEM can be obtained by

1. Solving

 $\min_{\Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy}} \operatorname{rank} \Phi_{uy} \text{ s.t. (Triang.), } \Phi_{xx}, \Phi_{xy}, \Phi_{ux}, \Phi_{uy} \in \operatorname{AffineSpace, (Safety)}$

- 2. Computing $\mathbf{K} = \mathbf{\Phi}_{uy} \mathbf{\Phi}_{ux}\mathbf{\Phi}_{xx}^{-1}\mathbf{\Phi}_{xy}$
- 3. Computing a causal factorization (D, E) of K with band equal to rank K.
- Constraints are convex (even linear)!
- Rank minimization is NP-hard

 \rightarrow Use convex relaxation (nuclear norm) [1]: rank $\Phi_{uy} \rightarrow \|\Phi_{uy}\|_{*}$

Numerical experiments

2D double integrator (drone model) $\ddot{p}_{\chi} = u_{\chi}$ 5 $\ddot{p}_{v} = u_{v}$ Discretized (T = 20 time steps) 0 . Measure the position only $\begin{bmatrix} p_x & p_y \end{bmatrix}^{\top}$ Add bounded process noise w_t and measurement noise v_t -5 Min. messages: 13 messages Min. sensor usage: 16 measurements -10 +-10Min. actuator usage: 26 actuations

Take home message

- To minimize sensor-to-actuator messages \rightarrow split the controller in encoder/decoder
- System level synthesis can be used to have convex constraints

Future works

- Approximate causal factorization $\mathbf{K} \approx \mathbf{D}\mathbf{E}$
- Infinite horizon (e.g., using FIR)

Thank you!

Any questions?

A low-Rank Approach to Minimize Sensor-to-Actuator Communication in Finite-Horizon Output Feedback

Antoine Aspeel¹, Jakob Nylof^{1,2}, Jing Shuang (Lisa) Li¹, Necmiye Ozay¹

¹ University of Michigan
² KTH Royal Institute of Technology