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Motivation

[1] M. Ev
[2]J. Kab

Data-driven: Solutions that harness the
power of data.

Robustness: Approaches that are robust
to modelling errors and uncertainties.

Verification: Control algorithms that are
provably safe.

erett, G. Habibi, C. Sun, and J. P. How, “Reachability analysis of neural feedback loops”
zan, L. Hewing, A. Liniger, and M. N. Zeilinger, “Learning-based model predictive control for autonomous racing”
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Outline

Pred (X, S,)
) s . . 4 0) 3)-Koopman
- Prel(X,5.) Dynamics
o) . 5. over-approx.
. e
zt = f(z,u s
F(@,u) z =110z 2t € Az+BudW

J S— B BRS
e s, Pref. (X, S) $-Tmplicit | Pre%,, (Z,S2)
Inner Approx.
Backward Reachable Sets Koopman Over Approximations (KOA)
@ 4 —
Ours y(x) = (x, sin(6))
- AN 2
|:{> “ Target Set “ © °
Ay, By, Wy by
As, Bs, W3 3 T : 3 ;

Local KOA Experiments



e \We consider discrete time nonlinear
systems of the form: x* = f(x,v)

e Given a target set, compute the
backward reachable set.

o Recursively compute longer horizon

e Having BRS simplifies controller design
significantly
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e For nonlinear systems, computing the
BRS is intractable

o BRS can also be nonconvex
o Common set representations cannot be
used

e Goal: Compute inner-approximations
of the BRS for unknown nonlinear
systems.

e Existing methods posses weaknesses

[3] D. Han, A. Rizaldi, A. EI-Guindy, and M. Althoff, “On enlarging backward reachable sets via zonotopic set membership”
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® Hamilton-Jacobi-Bellman (HJB) equation solvers [4, 5]:
o Cannot scale to high-dimensional problems

O Most approaches do not guarantee inner-approximation

® Set-based approaches [6, 7]:
o Limited to linear systems

o Linearization-based approaches exist but they have large approximation error

® Koopman theory: Approximate nonlinear systems by linear ones using a lifting function [8]
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[4] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A brief overview and recent advances”

[5] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games”
[6] M. Althoff, G. Frehse, and A. Girard, “Set propagation techniques for reachability analysis”

[7] L. Yang, H. Zhang, J.-B. Jeannin, and N. Ozay, “Efficient backward reachability using the Minkowski difference of constrained zonotopes”
[8] S. L. Brunton, M. Budisic, E. Kaiser, and J. N. Kutz, “Modern Koopman theory for dynamical systems”



Koopman over-approximation

°* Compute BRS for linear system robust to
modelling error

* The computed sets cannot be directly
used

* Forinner-approximation intersection with
manifold is needed

®* |ntersection is still non-convex
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* The error bound is computed using:

* Maximum train error

® Error functions Lipschitz constant

* Lipschitz constant is estimated via

br

Extreme Value Theory [9]
Figures adapted from [10, 11]

[9] G. Wood, and B. Zhang, “Estimation of the Lipschitz constant of a function”
[10] C. Knuth, G. Chou, N. Ozay, and D. Berenson “Probabilistic guarantees on safety and reachability via Lipschitz constants”
[11] S.M. LaValle, “Planning algorithms”



Example: Forced duffing oscillator
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Example: Inverted Pendulum
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Local Koopman over-approximations

e Make local adaptations similar to hybridization =

Ay, B, Wi N

e Compute system matrices for each subdomain

o Split the domain if the error bound is large @ ’ Gt
A2,B27W2 | “
e The new error bound depends on: ﬂ

As, By, W
o How much the model changes e

o How much max training error decreases
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Inverted pendulum
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A novel method to compute BRS inner-approximations for nonlinear systems
Construction of data-driven KOA for BRS computation

Online adaptation of KOA to localities that grant better approximations

How to find the lifting function Y ?
Can we ensure having a lifting function improves BRS

Replace polytopes by zonotopes
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