

Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems

Haldun Balim

Antoine Aspeel

Zexiang Liu

Prof. Necmiye Ozay

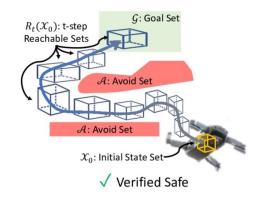
Work partly funded by ONR MURI

Motivation

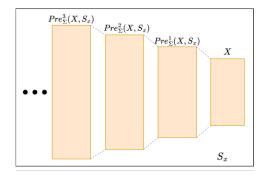
• **Data-driven:** Solutions that harness the power of data.

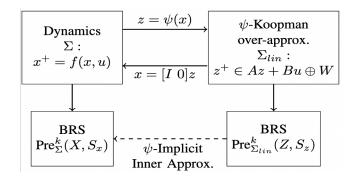
• **Robustness:** Approaches that are robust to modelling errors and uncertainties.

• Verification: Control algorithms that are provably safe.



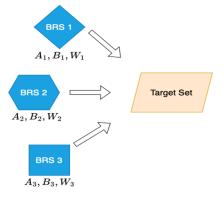
Outline



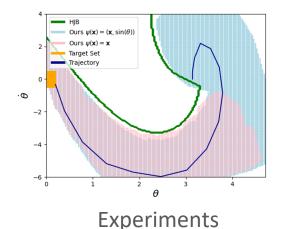


Backward Reachable Sets

Koopman Over Approximations (KOA)



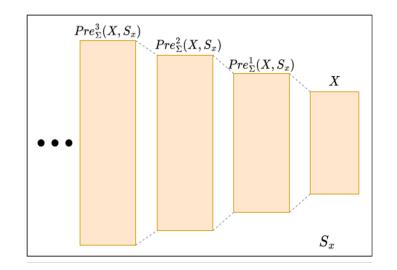
Local KOA



Backward reachable set (BRS)

 We consider discrete time nonlinear systems of the form: x⁺ = f(x, u)

- Given a target set, compute the backward reachable set.
 - Recursively compute longer horizon

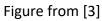


 Having BRS simplifies controller design significantly

Problem statement

- For nonlinear systems, computing the BRS is intractable
 - BRS can also be nonconvex
 - Common set representations cannot be used
- <u>Goal</u>: Compute **inner-approximations** of the BRS for unknown nonlinear systems.
- Existing methods posses weaknesses





Related Work

- Hamilton-Jacobi-Bellman (HJB) equation solvers [4, 5]:
 - Cannot scale to high-dimensional problems
 - Most approaches do not guarantee inner-approximation
- Set-based approaches [6, 7]:
 - Limited to linear systems
 - Linearization-based approaches exist but they have large approximation error
- Koopman theory: Approximate nonlinear systems by linear ones using a lifting function [8]

$$\psi : \mathbb{R}^{n_x} \to \mathbb{R}^{n_z} : x \mapsto \psi(x) = \begin{bmatrix} x \\ \phi(x) \end{bmatrix}$$
$$\psi(f(x, u)) \approx A\psi(x) + Bu$$

[4] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, "Hamilton-jacobi reachability: A brief overview and recent advances"

[5] I. Mitchell, A. Bayen, and C. Tomlin, "A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games"

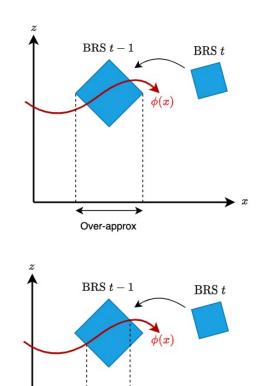
[6] M. Althoff, G. Frehse, and A. Girard, "Set propagation techniques for reachability analysis"

[7] L. Yang, H. Zhang, J.-B. Jeannin, and N. Ozay, "Efficient backward reachability using the Minkowski difference of constrained zonotopes"

[8] S. L. Brunton, M. Budisic, E. Kaiser, and J. N. Kutz, "Modern Koopman theory for dynamical systems"

Koopman over-approximation

- Compute BRS for linear system robust to modelling error
- The computed sets cannot be directly used
- For inner-approximation intersection with manifold is needed
- Intersection is still non-convex



Inner-approx

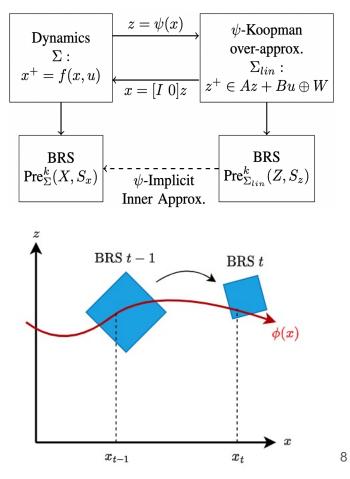
x

Main Result

Theorem If

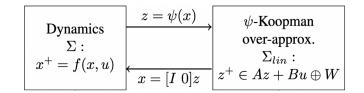
- Σ_{lin} is a ψ -Koopman over-approximation of Σ
- S_z is a ψ -implicit inner-approximation of S_x
- Z is a ψ -implicit inner-approximation of X

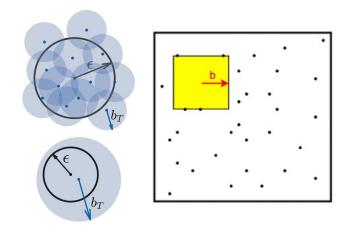
then $Pre_{\Sigma_{lin}}^{t}(Z, S_{z})$ is a ψ -implicit inner-approximation of $Pre_{\Sigma}^{t}(X, S_{x})$ for all t



Data-driven Koopman over-approximations

- The system matrices are estimated from data
- The error bound is computed using:
 - Maximum train error
 - Error functions Lipschitz constant
- Lipschitz constant is estimated via Extreme Value Theory [9]

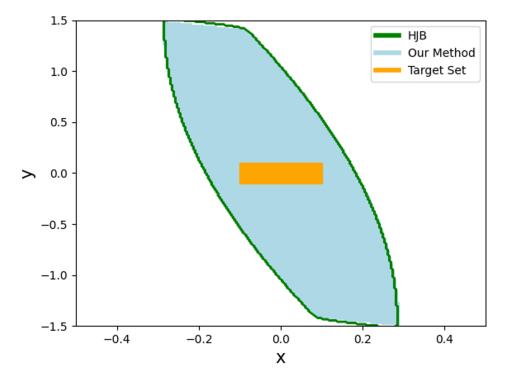




Figures adapted from [10, 11]

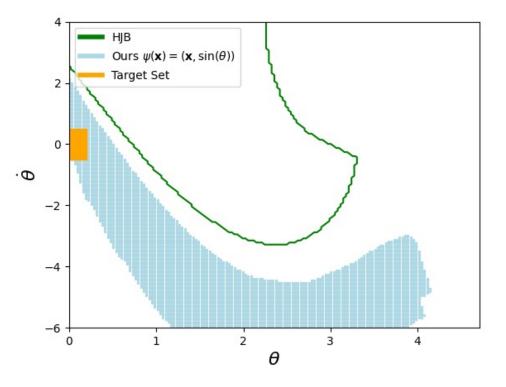
Example: Forced duffing oscillator

$$\dot{\mathbf{x}} = \begin{bmatrix} y \\ 2x - 2x^3 - 0.5y + u \end{bmatrix}$$



Example: Inverted Pendulum

$$\dot{\mathbf{x}} = \begin{bmatrix} \dot{\theta} \\ \frac{3g}{2l} \sin(\theta) + \frac{3}{ml^2} u \end{bmatrix}$$

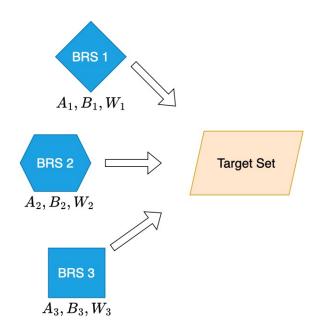


Local Koopman over-approximations

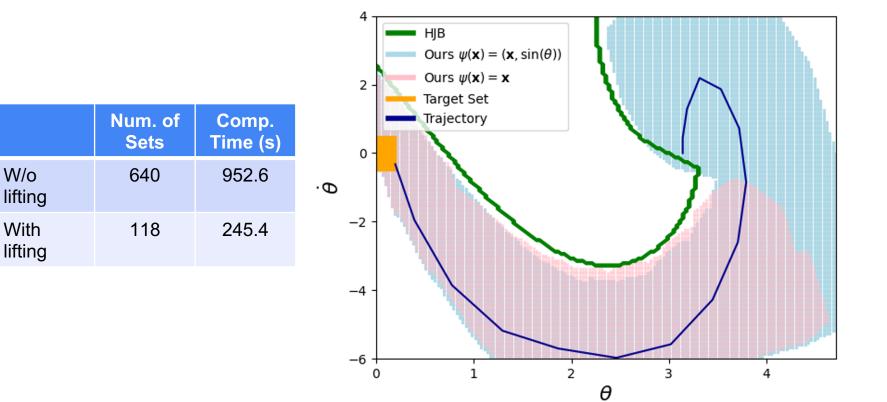
• Make local adaptations similar to hybridization

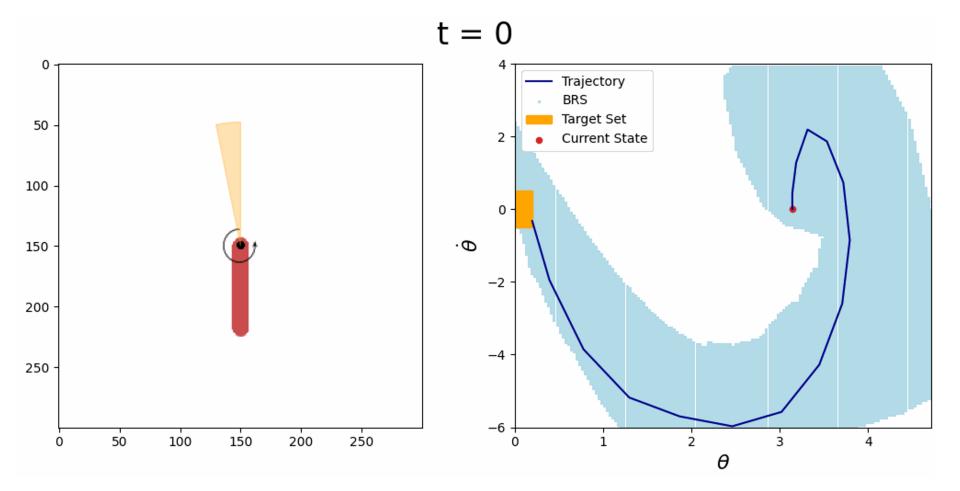
- Compute system matrices for each subdomain
 - Split the domain if the error bound is large

- The new error bound depends on:
 - How much the model changes
 - How much max training error decreases



Inverted pendulum





Contribution

- A novel method to compute BRS inner-approximations for nonlinear systems
- Construction of data-driven KOA for BRS computation
- Online adaptation of KOA to localities that grant better approximations

Future works

- How to find the lifting function ψ ?
- Can we ensure having a lifting function improves BRS
- Replace polytopes by zonotopes

Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems

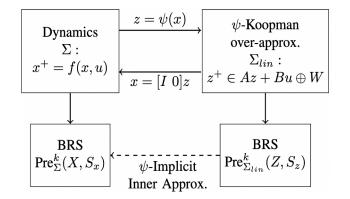
Haldun Balim^{1,2}

Antoine Aspeel¹

Zexiang Liu¹

Prof. Necmiye Ozay¹

University of Michigan, Ann Arbor¹ ETH Zürich²



Thank for listening. Check out our project page:

