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Motivating example: proton therapy
» Cancer treatment method
» Irradiate the tumor while sparing healthy tissue

Volumetric Modulated Arc Therapy (VMAT), Varian ®
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Motivating example: proton therapy

Cancer treatment method

Irradiate the tumor while sparing healthy tissue

Challenging for mobile tumors (liver or lung)

Acquire X-ray images of the patient’s chest to locate the tumor
X-ray acquisitions are irradiating and must therefore be limited
When should X-ray images be acquired?
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Other motivating examples

Whenever we want to estimate a dynamic quantity and the number of
measurements is limited.

» Estimating the position of a drone from its GPS measurements
» Estimating the number of infections based on tests during a pandemic
» Estimating voting intentions from surveys during an election period
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Main topic

Considering a stochastic dynamical system over a finite horizon, when should we
measure to have the best' estimate, on average, over the horizon?

In a sense that will be made clear later.
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Summary
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Nonlinear and non-Gaussian dynamics (Chap. 4)

Robust estimation under bounded disturbances (Chap. 5)

Conclusion
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Summary

Linear and Gaussian dynamics (Chap. 3)
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Linear and Gaussian dynamics

Linear system dynamics:

x(t+1) =Ax(t) +w(t)

N Cx(t)+v(r) ifo(r)=1
Yol =1 if (1) =0

Normally distributed unknowns:

t) ~N(0,0)
) ~N(0,R)

wI(l) ~
~
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(
(
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Linear and Gaussian dynamics

Mean squared error estimate:

X6(0:1) (t) = E[x(7) ‘ya(o:t) (0:1)]

Optimization program:

Linear system dynamics:

x(t+1) =Ax(t) +w(t)
Cx(t)+v(r) ifo(r)=1
Yo lf) = {@ it o(1) =0
min ZEHX — o0 (1)|’]

Normally distributed unknowns: o(0:7) ;=9
Expected MSE
w(t) ~N(0,0) r
v(t) ~N(0,R) suchthat ) o(r) <N

- t=0

—_————
Budget constraint
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Linear and Gaussian dynamics

Remarks
» Fits the Kalman filtering formalism
» Recursive “closed form” formula for the objective function
» Reduces to a deterministic combinatorial optimization program
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Contributions

» A genetic algorithm implementing a count preserving crossover is well suited
to solve it
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Optimization algorithms

0.14 -
— — RT mean cost
——RT min cost
0.135 — = SC mean cost |
///// —— 4~ — — — — ]——SC min cost
= =RC mean cost
e RC min cost
0.13 == CPC mean cost| |
.............................................. e CPC i cost
----- Regular cost
s 0.125 ‘\ E
~
LERRN
0.12 \ B
\
~
~
0.115 \ *\-...,.___.~___~~_—
‘ i Py pa—— i
0.11 | | | |
0 2000 4000 6000 8000 10000

Number of cost function evaluations

Genetic algorithm
with count preserving
crossover (CPC) outper-
forms other variants

14/31



Linear and Gaussian dynamics

Remarks
» Fits the Kalman filtering formalism
» Recursive “closed form” formula for the objective function
» Reduces to a deterministic combinatorial optimization program

Contributions

» A genetic algorithm implementing a count preserving crossover is well suited
to solve it

> |t has been shown on a lung tumor patient that the optimal intermittent
Kalman filter outperforms the regular Kalman filter (Chap. 6)
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Summary

Nonlinear and non-Gaussian dynamics (Chap. 4)
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Nonlinear and non-Gaussian dynamics

Nonlinear system dynamics:

x(t+1) =f(x(2), w(1))

(r) = g(x(r),v(r)) ifo(t)=1
Yo(r) 0 ot 0

Arbitrarily distributed unknowns:
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Nonlinear and non-Gaussian dynamics

Nonlinear system dynamics:

x(t+1) =f(x(2), w(1))

_ Jax(®),v(r)) ifo(r)
Vo) = {@ if o(1)

Arbitrarily distributed unknowns:

=1
=0

Mean squared error estimate:

Ko (0:1) (1) = E[x() [yo(0:1) (0:1)]

Optimization
triggered):

program (time-

T
in Y E[|x(t) — 0 (1)
6%151;); [[[x(2) xc(O.z)()Hl
Expected MSE

T
suchthat ) o(r) <N
t=0

Budget constraint
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Nonlinear and non-Gaussian dynamics

Remarks
» Fits the particle filtering formalism
» No “closed form” formula for the objective function
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Monte Carlo approximation

c(0:7)

|

| Model |

{yk(t)}l:d(t):l

Objective function approximation:

| Intermittent PF | {5 mo, p
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MSE" = ¥ (1) = ()|
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Nonlinear and non-Gaussian dynamics

Remarks
» Fits the particle filtering formalism
» No “closed form” formula for the objective function

Contributions
» Objective function approximated numerically by a Monte-Carlo method
» A genetic algorithm implementing a count preserving crossover is well suited
to solve it

» Also developed an Ex post version: recomputes the next measurement times
after each new measurement
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Estimation performance
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Summary

Robust estimation under bounded disturbances (Chap. 5)
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Linear dynamics under bounded disturbances

Linear system dynamics:
x(t+1) = Ax(1) + w(z)
(1) = Cx(t)+v(r) ifo(r)=1
Y0 it o(1) = 0
Unknowns in convex polyhedra:

w(t) e W
v(t) eV
X(O) e Xy
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Linear dynamics under bounded disturbances

Luenberger-like estimate:

Linear system dynamics: R(t41) = Ax(r) — y(1)

x(t+1) = Ax(r) + w(?) YO =fi+ Y Fuo0ore () - Cx(1))
. t<ts.t o(1)=1
(1) = Cx(t)+v(t) ifo(r)=1
Yo\ =19 if (1) =0 Optimization program:
. . T
Unknowns in convex polyhedra: min max Z (1) = (1)
G<0:T)1f/7F():1) w(t)vv(t)’x(o) =0
w(t) e W
v(t) eV

T
such that o(t)<N
X(O) S 1)) t:Zo

—_———
Budget constraint
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Networked control systems

Co-design the controller, the measurement times and the control times.

"1 Pran S

’ | Network ‘ ‘

e Controller

o°(1)
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Networked control systems

Co-design the controller, the measurement times and the control times.

w(t),v(t) @
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e Controller
U
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Linear dynamics under bounded disturbances

Remark

» Without the binary variables, gives a linear program using
Youla-parameterization and polytope containment methods
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Linear dynamics under bounded disturbances

Remark

» Without the binary variables, gives a linear program using
Youla-parameterization and polytope containment methods

Contributions

» Technical result: some linear constraints remain linear after Youla’s nonlinear
change of variable

» Reduces to a mixed integer linear program
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Example

Final feasible set

Drone model
» 20 time steps
» 3 measurements
» 4 control actions
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Example

Drone model
» 20 time steps
» 3 measurements
» 4 control actions
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Summary

Conclusion
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Conclusion

Take home message

Optimize measurement times for state estimation of stochastic dynamical systems
in three cases:

1. Minimizing the expected MSE for linear and Gaussian systems
2. Minimizing the expected MSE for nonlinear and non-Gaussian systems

3. Minimizing the worst case estimation error for linear systems subject to
bounded disturbances

Potential to improve the treatment of mobile tumors by proton therapy
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Conclusion

Take home message

Optimize measurement times for state estimation of stochastic dynamical systems
in three cases:

1. Minimizing the expected MSE for linear and Gaussian systems
2. Minimizing the expected MSE for nonlinear and non-Gaussian systems

3. Minimizing the worst case estimation error for linear systems subject to
bounded disturbances

Potential to improve the treatment of mobile tumors by proton therapy

Further work

> Extend to networked control systems: co-design the activation times of
sensors and actuators and the transmission times between sensors and
actuators
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Thank you for listening!

Questions?
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