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Motivating example: proton therapy
▶ Cancer treatment method
▶ Irradiate the tumor while sparing healthy tissue

Volumetric Modulated Arc Therapy (VMAT), Varian ®
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Other motivating examples

Whenever we want to estimate a dynamic quantity and the number of
measurements is limited.

▶ Estimating the position of a drone from its GPS measurements
▶ Estimating the number of infections based on tests during a pandemic
▶ Estimating voting intentions from surveys during an election period
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Main topic

Considering a stochastic dynamical system over a finite horizon, when should we
measure to have the best1 estimate, on average, over the horizon?

1In a sense that will be made clear later.
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Linear and Gaussian dynamics

Linear system dynamics:

x(t+1) = Ax(t)+w(t)

yσ(t)(t) =

{
Cx(t)+ v(t) if σ(t) = 1
/0 if σ(t) = 0

Normally distributed unknowns:

w(t)∼N (0,Q)

v(t)∼N (0,R)

x(0)∼N (x̄0, P̄0)

Mean squared error estimate:

x̂σ(0:t)(t) = E[x(t)|yσ(0:t)(0:t)]

Optimization program:

min
σ(0:T)

T

∑
t=0

E[∥x(t)− x̂σ(0:t)(t)∥2]︸ ︷︷ ︸
Expected MSE

such that
T

∑
t=0

σ(t)≤ N︸ ︷︷ ︸
Budget constraint
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Linear and Gaussian dynamics

Remarks
▶ Fits the Kalman filtering formalism
▶ Recursive “closed form” formula for the objective function
▶ Reduces to a deterministic combinatorial optimization program

Contributions
▶ A genetic algorithm implementing a count preserving crossover is well suited

to solve it
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Optimization algorithms
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Linear and Gaussian dynamics

Remarks
▶ Fits the Kalman filtering formalism
▶ Recursive “closed form” formula for the objective function
▶ Reduces to a deterministic combinatorial optimization program

Contributions
▶ A genetic algorithm implementing a count preserving crossover is well suited

to solve it
▶ It has been shown on a lung tumor patient that the optimal intermittent

Kalman filter outperforms the regular Kalman filter (Chap. 6)
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Nonlinear and non-Gaussian dynamics

Nonlinear system dynamics:

x(t+1) = f (x(t),w(t))

yσ(t)(t) =

{
g(x(t),v(t)) if σ(t) = 1
/0 if σ(t) = 0

Arbitrarily distributed unknowns:

w(t)∼W
v(t)∼ V
x(0)∼X0

Mean squared error estimate:

x̂σ(0:t)(t) = E[x(t)|yσ(0:t)(0:t)]

Optimization program (time-
triggered):

min
σ(0:T)

T

∑
t=0

E[∥x(t)− x̂σ(0:t)(t)∥2]︸ ︷︷ ︸
Expected MSE

such that
T

∑
t=0

σ(t)≤ N︸ ︷︷ ︸
Budget constraint
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Nonlinear and non-Gaussian dynamics

Remarks
▶ Fits the particle filtering formalism
▶ No “closed form” formula for the objective function
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Monte Carlo approximation

σ(0:T)

Model

Intermittent PF

{yk(t)}t:σ(t)=1

{x̂k(t)}t=0,...,T

MSE

{xk(t)}t=0,...,T

MSEk = ∑
T
t=0 ∥xk(t)− x̂k(t)∥2

Objective function approximation:

E

[
T

∑
t=0

∥x(t)− x̂(t)∥2

]
≈ 1

K

K

∑
k=1

MSEk
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Nonlinear and non-Gaussian dynamics

Remarks
▶ Fits the particle filtering formalism
▶ No “closed form” formula for the objective function

Contributions
▶ Objective function approximated numerically by a Monte-Carlo method
▶ A genetic algorithm implementing a count preserving crossover is well suited

to solve it
▶ Also developed an Ex post version: recomputes the next measurement times

after each new measurement
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Estimation performance
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Linear dynamics under bounded disturbances

Linear system dynamics:

x(t+1) = Ax(t)+w(t)

yσ(t)(t) =

{
Cx(t)+ v(t) if σ(t) = 1
/0 if σ(t) = 0

Unknowns in convex polyhedra:

w(t) ∈W
v(t) ∈ V
x(0) ∈ X0

Luenberger-like estimate:

x̂(t+1) = Ax̂(t)− γ(t)

γ(t) = ft + ∑
τ≤t s.t. σ(τ)=1

F(t,τ)(yσ(τ)(τ)−Cx̂(τ))

Optimization program:

min
σ(0:T),ft,F(t,τ)

max
w(t),v(t),x(0)

T

∑
t=0

∥x(t)− x̂(t)∥∞

such that
T

∑
t=0

σ(t)≤ N︸ ︷︷ ︸
Budget constraint
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Networked control systems

Co-design the controller, the measurement times and the control times.

Controller

Network

PlantZOH
u(t)

• •

σm(t)

y(t)

••

σ c(t)

w(t),v(t)
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Linear dynamics under bounded disturbances

Remark
▶ Without the binary variables, gives a linear program using

Youla-parameterization and polytope containment methods

Contributions
▶ Technical result: some linear constraints remain linear after Youla’s nonlinear

change of variable
▶ Reduces to a mixed integer linear program
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Example

Initial
state

First
feasible
set

Second
feasible
set

Final feasible set

Drone model
▶ 20 time steps
▶ 3 measurements
▶ 4 control actions
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Example

Drone model
▶ 20 time steps
▶ 3 measurements
▶ 4 control actions
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Conclusion

Take home message
Optimize measurement times for state estimation of stochastic dynamical systems
in three cases:

1. Minimizing the expected MSE for linear and Gaussian systems
2. Minimizing the expected MSE for nonlinear and non-Gaussian systems
3. Minimizing the worst case estimation error for linear systems subject to

bounded disturbances
Potential to improve the treatment of mobile tumors by proton therapy

Further work
▶ Extend to networked control systems: co-design the activation times of

sensors and actuators and the transmission times between sensors and
actuators
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Thank you for listening!

Questions?
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