

A Simulation Preorder for Koopman-like Lifted Control Systems

Antoine Aspeel & Necmiye Ozay

Def. The specification S is **satisfied** by the lifted system LS_y under the policy π if $B_{\pi}[LS_{Y}] \subseteq S$. This is written $LS_{Y} \vDash_{\pi} S$.

IFAC Conference on Analysis and Design of Hybrid Systems (2024)

Simulation between lifted systems

Def. LS_Y is **simulated** by LS_Z (denoted $LS_Y \leq LS_Z$) if there exists a set-valued map $\rho: \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ s.t.

 $\forall x \in X: \psi_Y(x) \in \rho(\psi_Z(x))$ (Relation between liftings)

{antoinas, necmiye}@umich.edu

Introduction

In this work, a simulation preorder among lifted systems $-$ a generalization of finite-dimensional Koopman approximations to systems with inputs — is introduced. It is proved that this simulation relation implies the containment closed-loop behaviors.

Finite-dimensional Koopman liftings have been successfully used to construct high dimensional linear approximations of dynamical systems, allowing to leverage linear control techniques to control nonlinear systems.

> **Theorem** Given two lifted systems LS_Y and LS_Z and a policy π , if LS_Y is simulated by LS_Z , then the closed loop behavior of LS_Y . under π is included in the closed loop behavior of LS_Z under π , i.e.,

These results enable us to compare different lifting functions and alternative lifted systems in terms of their usefulness in control design.

$$
x^+ \in f_X(x, u)
$$

Consequently, if a specification S is satisfied by LS_Z under the policy π , then S is also satisfied by LS_y under the same policy π , i.e.,

 $LS_Y \leqslant LS_Z \vDash_{\pi} S \implies LS_Y \vDash_{\pi} S$

If a nonlinear system of interest LS_X (e.g., unlifted) is simulated by an affine lifted system LS_Y , then linear control methods can be used to find a policy π s.t. $LS_Y \vDash_{\pi} S$. The policy can be used to control LS_{X} .

If LS_X is simulated by two lifted systems LS_Y and LS_Z and if $LS_Y \leqslant LS_Z$, then LS_Y is a "not worse" representation of LS_X than LS_Z in terms of specification satisfaction.

Some special cases of $LS_Y \leqslant LS_Z$: If IC is unlifted and

Important examples of lifted systems: with $x(t) \in X$, $u(t) \in U$, $y(t) \in \mathbb{R}^{n_Y}$ and $C_Y \psi_Y(x) = x$.

- **1. Unlifted** (i.e., classical) systems $x^+ \in f_X(x, u)$ are lifted systems with $n_Y = n_X$ and $\psi_Y = C_Y = id$.
- **2. Affine** (or **piecewise affine**) lifted systems $y(t + 1) \in Ay(t) + Bu(t) \oplus W$

[1] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems. *IEEE L-CSS*. [2] Wang, Z., Jungers, R. M., & Ong, C. J. (2023). Computation of invariant sets via immersion for discrete-time nonlinear systems. *Automatica*. [3] Girard, A., & Martin, S. (2011). Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices. *IEEE TAC*.

Given a classical (i.e., unlifted) system $LS_X: x^+ \in f_X(x, u)$

1. Pick K lifting functions $\psi_1, ..., \psi_K$

Given two lifted systems LS_Y and LS_Z , verifying if $LS_Y \leqslant LS_Z$ is an **infinite dimensional** feasibility problem.

$$
LS_Y \leqslant LS_Z \quad \Longrightarrow \quad \mathbf{B}_{\pi}[LS_Y] \subseteq \mathbf{B}_{\pi}[LS_Z]
$$

 \rightarrow We derive **finite-dimensional** sufficient conditions to 1. find an affine lifted system that simulates a polynomial system 2. verify if one affine lifted system simulates another

is picewise affile and unlitted \rightarrow reduces to **hybridization** in [3]

For the system LS_x : $\ddot{x} = 2x - 2x^3 - 0.5\dot{x} + u$ and three lifting functions, we find three affine lifted systems simulating LS_X . We could use these to find inner-approx. of the BRS.

Improve numerical methods to verify $LS_Y \leqslant LS_Z$ and generalize to continuous-time and hybrid systems.

$$
x(t) = Cy(t)
$$

for which linear control methods can be used.

Def. The **behavior** of LS_Y under a policy π is the set $\boldsymbol{B}_{\pi}[LS_{Y}] = \{ (x, u) | \exists y \text{ s.t.} (x, u, y) \text{ is a max. sol.} \}$ $\& u(t) = \pi(x(0), ..., x(t))$.

Def. A **specification** is a set of (finite or infinite) sequences of (x, u) pairs: $S \subseteq (X \times U)^\infty$. *(e.g., safety or LTL constraints)*

$$
x^{+} \in f_{X}(x, u)
$$
\n
$$
y = \psi(x)
$$
\n
$$
y^{+} \in Ay + Bu \oplus W
$$
\n
$$
x = Cy
$$

•
$$
\forall (z, u) \in \mathbb{R}^{n_z} \times U: f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))
$$
 (dynamics)

$$
\forall z \in \mathbb{R}^{n_Z} : C_Y \rho(z) \subseteq \{C_Z z\}
$$

Computational aspects

In practice…

 $(outputs)$

2. For each, compute an affine lifted system: LS_k s.t. $LS_x \leq LS_k$ 3. If $LS_i \leq LS_j$, use LS_i instead of LS_i

$$
\underline{\text{Def. A lifted system is defined as } LS_Y:} \begin{cases} y(0) = \psi_Y(x(0)) \\ y(t+1) \in f_Y(y(t), u(t)) \\ x(t) = C_Y y(t) \end{cases}
$$

Experiments with Backward reachable sets (BRS)

 \ddot{x}

 $^{-1}$

 $-$

Verifying $LS_y \leq lS_z$ could be done in some (limited) cases.

Lifted systems

This work is funded by the ONR grant N00014-21-1-2431 (CLEVR-AI).

Future works