

A Simulation Preorder for Koopman-like Lifted Control Systems

IFAC Conference on Analysis and Design of Hybrid Systems (2024)

Introduction

Finite-dimensional Koopman liftings have been successfully used to construct high dimensional linear approximations of dynamical systems, allowing to leverage linear control techniques to control nonlinear systems.

In this work, a simulation preorder among lifted systems — a generalization of finite-dimensional Koopman approximations to systems with inputs — is introduced. It is proved that this simulation relation implies the containment closed-loop behaviors.

These results enable us to compare different lifting functions and alternative lifted systems in terms of their usefulness in control design.

$$x^+ \in f_X(x, u)$$

$$y = \psi(x)$$

$$y^+ \in Ay + Bu \oplus V$$

$$x = Cy$$

Lifted systems

Def. A **lifted system** is defined as
$$LS_Y$$
:
$$\begin{cases} y(0) = \psi_Y(x(0)) \\ y(t+1) \in f_Y(y(t), u(t)) \\ x(t) = C_Y y(t) \end{cases}$$

with $x(t) \in X$, $u(t) \in U$, $y(t) \in \mathbb{R}^{n_Y}$ and $C_Y \psi_Y(x) = x$. Important examples of lifted systems:

- **1.** Unlifted (i.e., classical) systems $x^+ \in f_X(x, u)$ are lifted systems with $n_Y = n_X$ and $\psi_Y = C_Y = id$.
- Affine (or piecewise affine) lifted systems 2. $y(t+1) \in Ay(t) + Bu(t) \oplus W$

$$x(t) = Cy(t)$$

for which linear control methods can be used.

<u>Def.</u> The **behavior** of LS_Y under a policy π is the set $B_{\pi}[LS_{Y}] = \{ (x, u) \mid \exists y \text{ s. t.} (x, u, y) \text{ is a max. sol.} \}$ $\& u(t) = \pi(x(0), \dots, x(t)) \}.$

<u>Def.</u> A specification is a set of (finite or infinite) sequences of (x, u)pairs: $S \subseteq (X \times U)^{\infty}$. (e.g., safety or LTL constraints)

{antoinas, necmiye}@umich.edu

Antoine Aspeel & Necmiye Ozay

<u>Def.</u> The specification S is **satisfied** by the lifted system LS_Y under the policy π if $B_{\pi}[LS_{Y}] \subseteq S$. This is written $LS_{Y} \vDash_{\pi} S$.

Simulation between lifted systems

<u>Def.</u> LS_Y is **simulated** by LS_Z (denoted $LS_Y \leq LS_Z$) if there exists a set-valued map $\rho \colon \mathbb{R}^{n_Z} \rightrightarrows \mathbb{R}^{n_Y}$ s.t.

- $\forall x \in X: \psi_Y(x) \in \rho(\psi_Z(x))$ (*Relation between liftings*)
- $\forall (z, u) \in \mathbb{R}^{n_Z} \times U: f_Y(\rho(z), u) \subseteq \rho(f_Z(z, u))$ (dynamics)
- $\forall z \in \mathbb{R}^{n_Z} : C_Y \rho(z) \subseteq \{C_Z z\}$

Theorem Given two lifted systems LS_Y and LS_Z and a policy π , if LS_Y is simulated by LS_Z , then the closed loop behavior of LS_Y under π is included in the closed loop behavior of LS_Z under π , i.e.,

$$LS_Y \preccurlyeq LS_Z \implies \boldsymbol{B}_{\pi}[LS_Y] \subseteq \boldsymbol{B}_{\pi}[LS_Z]$$

Consequently, if a specification S is satisfied by LS_Z under the policy π , then S is also satisfied by LS_Y under the same policy π , i.e.,

 $LS_Y \leq LS_Z \vDash_{\pi} S \implies LS_Y \vDash_{\pi} S$

If a nonlinear system of interest LS_X (e.g., unlifted) is simulated by an affine lifted system LS_Y , then linear control methods can be used to find a policy π s.t. $LS_Y \vDash_{\pi} S$. The policy can be used to control LS_X .

If LS_X is simulated by two lifted systems LS_Y and LS_Z and if $LS_Y \leq LS_Z$, then LS_Y is a "not worse" representation of LS_X than LS_Z in terms of specification satisfaction.

<u>Some special cases of $LS_Y \leq LS_Z$:</u> If LS_{Y} is unlifted and • LS_Z is affine

 \rightarrow reduces to **Koopman over-approximation** in [1]

 LS_Z is affine and both systems are autonomous \rightarrow reduces to **approximate immersion** in [2]

 LS_Z is picewise affine and unlifted \rightarrow reduces to **hybridization** in [3]

[1] Balim, H., Aspeel, A., Liu, Z., & Ozay, N. (2023). Koopman-inspired Implicit Backward Reachable Sets for Unknown Nonlinear Systems. *IEEE L-CSS*. [2] Wang, Z., Jungers, R. M., & Ong, C. J. (2023). Computation of invariant sets via immersion for discrete-time nonlinear systems. Automatica. [3] Girard, A., & Martin, S. (2011). Synthesis for constrained nonlinear systems using hybridization and robust controllers on simplices. *IEEE TAC*.

Computational aspects

 \rightarrow We derive **finite-dimensional** sufficient conditions to 1. find an affine lifted system that simulates a polynomial system 2. verify if one affine lifted system simulates another

In practice...

Given a classical (i.e., unlifted) system LS_X : $x^+ \in f_X(x, u)$ 1. Pick K lifting functions ψ_1, \dots, ψ_K

(outputs)

Experiments with Backward reachable sets (BRS)

8

 $^{-1}$

Verifying $LS_Y \leq LS_Z$ could be done in some (limited) cases.

Future works

Improve numerical methods to verify $LS_Y \leq LS_Z$ and generalize to continuous-time and hybrid systems.

Given two lifted systems LS_Y and LS_Z , verifying if $LS_Y \leq LS_Z$ is an infinite dimensional feasibility problem.

2. For each, compute an affine lifted system: LS_k s.t. $LS_X \leq LS_k$ 3. If $LS_i \leq LS_i$, use LS_i instead of LS_i

For the system LS_X : $\ddot{x} = 2x - 2x^3 - 0.5\dot{x} + u$ and three lifting functions, we find three affine lifted systems simulating LS_X . We could use these to find inner-approx. of the BRS.

This work is funded by the ONR grant N00014-21-1-2431 (CLEVR-AI).